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Scalar versus matrix
Applications
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Scalar case
Matrix case
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Scalar orthogonality

Let ω be a positive measure on R. We can construct a family of
orthonormal polynomials (pn)n, dense in L2(ω, R) such that

〈pn, pm〉 =

∫
R
pn(t)pm(t)dω(t) = δnm, n,m > 0

This is equivalent to a three term recurrence relation

tpn(t) = an+1pn+1(t)+bnpn(t)+anpn−1(t), an+1 6= 0, bn ∈ R n > 0

Jacobi operator (tridiagonal):

t


p0(t)
p1(t)
p2(t)
...

 =


b0 a1

a1 b1 a2

a2 b2 a3
. . . . . . . . .



p0(t)
p1(t)
p2(t)
...


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Bochner problem

Bochner (1929): characterize (pn)n satisfying

dpn ≡ (α2t2 + α1t + α0)︸ ︷︷ ︸
f2(t)

p ′′n (t) + (β1t + β0)︸ ︷︷ ︸
f1(t)

p ′n(t) = λnpn(t)

This is equivalent to the symmetry of d with respect to 〈·, ·〉,i.e.

〈dpn, pm〉 = 〈pn, dpm〉

Moment equations

(n−1)(α2µn+α1µn−1+α0µn−2)+β1µn+β0µn−1, n > 1, µn =

∫
tnω(t)dt

Pearson equation
(f2(t)ω(t)) ′ = f1(t)ω(t)
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Classical families

Hermite: f2(t) = 1,ω(t) = e−t2 , t ∈ (−∞,∞):

Hn(t) ′′ − 2tHn(t) ′ = −2nHn(t)

Laguerre: f2(t) = t,ω(t) = tαe−t , α > −1, t ∈ (0,∞):

tLαn (t) ′′ + (α+ 1 − t)Lαn (t) ′ = −nLαn (t)

Jacobi: f2(t) = t(1 − t),ω(t) = tα(1 − t)β, α,β > −1, t ∈ (0, 1):

t(1 − t)P(α,β)
n (t) ′′ + (α+ 1 − (α+ β+ 2)t)P(α,β)

n (t) ′ =

−n(n + α+ β+ 1)P(α,β)
n (t)

Applications:
Quantum non relativistic models (Schrödinger equation).
Electrostatic equilibrium (with logarithmic potential).
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Matrix case

Matrix valued polynomials on the real line:

Cntn + Cn−1tn−1 + · · ·+ C0, Ci ∈ CN×N

Krein (1949): orthogonal matrix polynomials (OMP)
Orthogonality: weight matrix W (positive definite on L2(W , CN×N))
Matrix valued inner product:

〈P,Q〉W =

∫b
a
P(t)dW (t)Q∗(t) ∈ CN×N , P,Q ∈ CN×N [t]

A weight matrix W (t) reduces to scalar weights if there exists a
nonsingular matrix (independent of t) T such that W (t) = TD(t)T ∗

where D(t) diagonal.
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Orthonormality of (Pn)n with respect to a weight matrix W

〈Pn, Pm〉W =

∫
R

Pn(t)dW (t)P∗m(t) = δnmI , n, m > 0

is equivalent to a three term recurrence relation

tPn(t) = An+1Pn+1(t) + BnPn(t) + A∗nPn−1(t), n > 0

det(An+1) 6= 0, Bn = B∗n

Jacobi operator (block tridiagonal)

t


P0(t)
P1(t)
P2(t)

...

 =


B0 A1

A∗1 B1 A2

A∗2 B2 A3
. . . . . . . . .




P0(t)
P1(t)
P2(t)

...


Systematic study: Asymptotics, zeros of OMP, quadrature formulae...
Applications: scattering theory, times series and signal processing...
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Durán (1997): characterize orthonormal (Pn)n satisfying

P ′′n (t)(F 2
2 t

2 + F 2
1 t + F 2

0︸ ︷︷ ︸
F2(t)

) + P ′n(t)(F
1
1 t + F 1

0︸ ︷︷ ︸
F1(t)

) + Pn(t)F0(t) = ΛnPn(t),

n > 0, Λn Hermitian

Equivalent to the symmetry of

D = ∂2F2(t) + ∂1F1(t) + ∂1F0(t), ∂ =
d
dt

with PnD = ΛnPn

D is symmetric with respect to W if 〈PD,Q〉W = 〈P,QD〉W
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How to get examples

Matrix spherical functions associated to Pn(C) = SU(n + 1)/U(n)
Grünbaum-Pacharoni-Tirao (2003)

Durán-Grünbaum (2004):

Moment equations

B2
n = (B2

n)∗, n > 2

2(n − 1)B2
n + B1

n + (B1
n)∗ = 0, n > 1

n(n − 1)B2
n + nB1

n + B0
n = (B0

n)∗, n > 0

B j
n =

j∑
i=0

F j
j−iµn−i , j = 0, 1, 2, n > j , µn =

∫
tndW (t)
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Durán-Grünbaum (2004):

Symmetry equations

F2W = WF ∗2

2(F2W ) ′ = F1W + WF ∗1

(F2W ) ′′ − (F1W ) ′ + F0W = WF ∗0

lim
t→x

F2(t)W (t) = 0 = lim
t→x

(F1(t)W (t) − W (t)F ∗1 (t)), for x = a, b

General method: Suppose F2(t) = f2(t) with real coefficients.
Factorize

W (t) = ω(t)T (t)T ∗(t),

where ω is an scalar weight (Hermite, Laguerre or Jacobi) and T is a
matrix function solving

T ′(t) = G (t)T (t)
Manuel Domínguez de la Iglesia Methods of OMP satisfying differential equations
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1 The first symmetry equation is trivial.
2 Defining

F1(t) = 2f2(t)G (t) +
(f2(t)ω(t)) ′

ω(t)

the second symmetry equation also holds.
3 The third is equivalent to

(F1W − WF ∗1 ) ′ = 2(F0W − WF ∗0 ).

Then, it is enough to find F0 such that

χ(t) = T−1(t)
(
f2(t)G (t)+ f2(t)G (t)2 +

(f2(t)ω(t)) ′

ω(t)
G (t)−F0

)
T (t)

is hermitian for all t.
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Examples

Take f2 = I and ω = e−t2 .
Then G (t) = A + 2Bt{

If B = 0⇒W (t) = e−t2eAteA∗t

If A = 0⇒W (t) = e−t2eBt2eB∗t2

The Hermitian condition force us to take

A =


0 ν1 0 · · · 0
0 0 ν2 · · · 0
...

...
...

. . .
...

0 0 0 · · · νN−1

0 0 0 · · · 0

 ,νi ∈ C \ {0}

and B =
∑N−1

j=1 (−1)j+1Aj
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The same for f2 = tI and ω = tαe−t

Then G (t) = A + B
t {

If B = 0⇒ tαe−teAteA∗t

If A = 0⇒ tαe−ttBtB

and for f2 = (1 − t2)I and ω = (1 − t)α(1 + t)β

Then G (t) = A
1−t + B

1+t{
If B = 0⇒ (1 − t)α(1 + t)β(1 − t)A(1 − t)A

If A = 0⇒ (1 − t)α(1 + t)β(1 + t)B(1 + t)B
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Matrix valued bispectral problem (Grünbaum-Tirao, 2007) ⇒
ad-conditions


B0 A1

A∗1 B1 A2
. . . . . . . . .


︸ ︷︷ ︸

L


P0(t)

P1(t)
...

 = t


P0(t)

P1(t)
...



P0(t)

P1(t)
...

D =


Λ0

Λ1
. . .


︸ ︷︷ ︸

Λ


P0(t)

P1(t)
...


⇔ adk+1

L (Λ) = 0

where L is the Jacobi operator of the corresponding family of OMP
and D is a differential operator of order k
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Algebra of differential operators

For a fixed family (Pn)n of OMP we study the algebra over C

D(W ) =

{
D =

k∑
i=0

∂iFi (t) : PnD = Λn(D)Pn, n = 0, 1, 2, . . .
}

Scalar case: If F is the second order differential operator (Hermite,
Laguerre or Jacobi), then any operator U such that Upn = λnpn

U =

k∑
i=0

ciFi , ci ∈ C

⇒ D(ω) ' C[t]
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Matrix case: This algebra can be noncommutative and generated by several
elements

Existence of several linearly independent second order differential
operators having a fixed family of MOP as eigenfunctions

Existence of families of MOP satisfying odd order differential equations

Algebras: conjectures (Castro, Durán, Grünbaum, MdI)
except one (Tirao) due to Castro–Grünbaum (2006)
Properties (Grünbaum-Tirao, 2007):

The map D 7→ (Λn(D))n is a faithful representation, i.e.
I Λn(D1D2) = Λn(D1)Λn(D2)
I Λn(D) = 0 for all n, then D = 0

For D ∈ D(W ), there exists D∗ ∈ D(W ) such that
〈PD,Q〉W = 〈P,QD∗〉W
⇒ D(W ) = S(W )⊕ ıS(W )
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Convex cone of weight matrices

Dual situation to D(W ): given a fixed differential operator D we study:

Υ(D) = {W : 〈PD,Q〉W = 〈P,QD〉W , for all P,Q}

If Υ(D) 6= ∅, it is a convex cone:
W1,W2 ∈ Υ(D)⇒ γW1 + ζW2 ∈ Υ(D), γ, ζ > 0 (one of them 6= 0)

The weight matrices W going along with a symmetric second order
differential operator D give examples where Υ(D) 6= ∅ (one dimensional)
We show the first examples of symmetric second order differential operators
D for which Υ(D) is a two dimensional convex cone.
⇒ New phenomenon: (Monic) MOP Pn,ζ/γ with respect to γW1 + ζW2

Pn,ζ/γD = ΓnPn,ζ/γ
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Adding a Dirac delta distribution

All examples we consider are of the form

γW + ζM(t0)δt0 , γ > 0, ζ > 0, t0 ∈ R,

where W is a weight matrix having several linearly independent symmetric second
order differential operators and M(t0) certain positive semidefinite matrix.

Scalar case (ω+ mδt0)

Second order: there are NOT symmetric second order differential operators.

Fourth order: t0 at the endpoints of the support, which is NOT symmetric
with respect to the original weight (Krall, 1941):

Laguerre type e−t + Mδ0
Legendre type 1 + M(δ−1 + δ1)

Jacobi type (1 − t)α + Mδ0
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Method to find examples

Theorem (Durán–MdI, 2008)

Let W be a weight matrix and D = ∂2F2(t) + ∂1F1(t) + ∂0F0. Assume
that associated with the real point t0 ∈ R there exists a Hermitian positive
semidefinite matrix M(t0) satisfying

F2(t0)M(t0) = 0,

F1(t0)M(t0) = 0,

F0M(t0) = M(t0)F ∗0

Then
D is symmetric with respect to W

⇔
D is symmetric with respect to γW + ζM(t0)δt0
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Example where t0 ∈ R

W (t) = e−t2
(
1 + a2t2 at

at 1

)
, t ∈ R, a ∈ R \ {0}

Symmetry equations ⇒ Expression for the 5-dimensional (real) linear space
of symmetric differential operators of order at most two

Constraints:

F2(t0)M(t0) = 0,

F1(t0)M(t0) = 0,

F0M(t0) = M(t0)F ∗0
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Applications

Open problems

Scalar case
Matrix case
New phenomena

t0 = 0

D = ∂2F2(t) + ∂1F1(t) + ∂0F0(t),

F2(t) =

(
1 − at −1 + a2t2

−1 1 + at

)
F1(t) =

(
−2a − 2t 2a + 2(2 + a2)t

0 −2t

)
F0(t) =

(
−1 2 2+a2

a2
4
a2 1

)

M =

(
1 1
1 1

)
⇒ D is symmetric with respect to the family of weight matrices

Υ(D) =

{
γe−t2

(
1 + a2t2 at

at 1

)
+ ζ

(
1 1
1 1

)
δ0(t), γ > 0, ζ > 0

}
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Open problems

Scalar case
Matrix case
New phenomena

D = ∂2F2(t) + ∂1F1(t) + ∂0F0(t),

F2(t) =

(
−ξ∓a,t0 + at0 − at −1 − (a2t0)t + a2t2

−1 −ξ∓a,t0 + at

)
F1(t) =

(
−2a + 2ξ∓a,t0t −2t0 − 2aξ∓a,t0 + 2(2 + a2)t

2t0 2(ξ∓a,t0 − at0)t

)
F0(t) =

(
ξ∓a,t0 + 2 t0

a 22+a2
a2

4
a2 −ξ∓a,t0 − 2 t0

a

)

M(t0) =

(
(ξ±t0,a)

2 ξ±t0,a
ξ±t0,a 1

)
, ξ±a,t0 =

at0 ±
√

4 + a2t20
2
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Outline

1 Scalar versus matrix orthogonality
Scalar case
Matrix case
New phenomena

2 Applications
Quasi-birth-and-death processes
Quantum mechanics
Time-and-band limiting

3 Open problems
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Scalar versus matrix
Applications

Open problems

Quasi-birth-and-death processes
Quantum mechanics
Time-and-band limiting

Birth-and-death processes

Transition probability matrix

P =




b0 a0

c1 b1 a1

c2 b2 a2

. . .
. . .

. . .


 , bn > 0, an, cn > 0, an + bn + cn = 1
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Birth-and-death processes

Transition probability matrix

P =




b0 a0

c1 b1 a1

c2 b2 a2

. . .
. . .

. . .


 , bn > 0, an, cn > 0, an + bn + cn = 1

· · ·0 1 2
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Birth-and-death processes

Transition probability matrix

P =




b0 a0

c1 b1 a1

c2 b2 a2

. . .
. . .

. . .


 , bn > 0, an, cn > 0, an + bn + cn = 1

· · ·
b0

b1 b2

0 1 2
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Introducing the polynomials (qn)n by the conditions q−1(t) = 0, q0(t) = 1

and the recursion relation

t




q0(t)

q1(t)
...


 = P




q0(t)

q1(t)
...




i.e.

tqn(t) = anqn+1(t) + bnqn(t) + cnqn−1(t), n = 0, 1, . . .

there exists a unique measure dω(t) supported in [−1, 1] such that

∫
1

−1

qi (t)qj(t)dω(t)

/ ∫
1

−1

qj(t)
2dω(t) = δij
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Quantum mechanics
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n-step transition probability matrix:

Prob {Ei → Ej in n steps} = Pn
ij =

∑

k1,k2,...,kn−1

Pik1
Pk1k2

· · ·Pkn−1j

Karlin y McGregor (1959): integral representation of Pn

Karlin-McGregor formula

Pn
ij =

∫
1

−1

tnqi (t)qj (t)dω(t)

/ ∫
1

−1

qj(t)
2dω(t)

Invariant measure or distribution

A non-null vector π = (π0,π1,π2, . . . ) with non-negative components

πP = π

⇒ πi =
a0a1 · · · ai−1

c1c2 · · · ci
=

1
∫

1

−1
q2

i (t)dω(t)
=

1

‖qi‖2
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Quasi-birth-and-death processes

Transition probability matrix

P =




B0 A0

C1 B1 A1

C2 B2 A2

. . .
. . .

. . .


 ,

(An)ij , (Bn)ij , (Cn)ij > 0, det(An), det(Cn) 6= 0
∑

j

(An)ij + (Bn)ij + (Cn)ij = 1, i = 1, . . . ,N

Particular case: pentadiagonal matrix

P =




b0 a0

c1 b1

d0 0

a1 d1
0

e2 c2

0 e3

b2 a2

c3 b3

d2 0

a3 d3

0

0
e4 c4

0 e5

b4 a4

c5 b5

d4 0

a5 d5

. . .

. . .
. . .

. . .
. . .



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Network

· · ·

· · ·

1 3 5

2 4 6
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OMP: Grünbaum (2007) and Dette-Reuther-Studden-Zygmunt (2007):

Introducing the matrix polynomials (Qn)n by the conditions Q−1(t) = 0,

Q0(t) = I and the recursion relation

t




Q0(t)

Q1(t)
...


 = P




Q0(t)

Q1(t)
...




i.e.

tQn(t) = AnQn+1(t) + BnQn(t) + CnQn−1(t), n = 0, 1, . . .

and under certain technical conditions over An,Bn,Cn, there exists an

unique weight matrix dW (t) supported in [−1, 1] such that

( ∫
1

−1

Qi(t)dW (t)Q∗
j (t)

)( ∫
1

−1

Qj(t)dW (t)Q∗
j (t)

)−1

= δij I
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Karlin-McGregor formula

Pn
ij =

( ∫
1

−1

tnQi(t)dW (t)Q∗
j (t)

)( ∫
1

−1

Qj(t)dW (t)Q∗
j (t)

)−1

Invariant measure or distribution

Non-null vector with non-negative components

π = (π0
;π

1
; · · · ) ≡ (π0

1,π
0

2, . . . ,π
0

N ;π1

1,π
1

2, . . . ,π
1

N ; · · · )

such that

πP = π

⇒ π
j
i =?
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1
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1
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The family of processes (size N × N)

Conjugation

W (t) = T ∗W̃ (t)T

where

T =




1 1

0 −
α + β − k + 2

β − k + 1




Grünbaum-MdI (2008)

W̃ (t) = tα(1 − t)β
(

kt + β − k + 1 (1 − t)(β − k + 1)

(1 − t)(β − k + 1) (1 − t)2(β − k + 1)

)

t ∈ (0, 1), α,β > −1, 0 < k < β + 1

Pacharoni-Tirao (2006)
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We consider the family of OMP (Qn(t))n such that

Three term recurrence relation

tQn(t) = AnQn+1(t) + BnQn(t) + CnQn−1(t), n = 0, 1, . . .

where the Jacobi matrix is stochastic

Choosing Q0(t) = I the leading coefficient of Qn is

Γ(β + 2)Γ(α + β + 2n + 2)

Γ(α + β + n + 2)Γ(β + n + 2)

(
k+n

k
−

n(α+β+2n+2)

(α+β+n+2)(α+β−k+2)

0
(n+α+β−k+2)(α+β+2n+2)

(α+β+n+2)(α+β−k+2)

)

Moreover, the corresponding norms are diagonal matrices:

‖Qn‖2

W =
Γ(n + α + 1)Γ(n + 1)Γ(β + 2)2(n + α + β − k + 2)

Γ(n + α + β + 2)Γ(n + β + 2)
×

(
n+k

k(2n+α+β+2)
0

0 (n+α+1)(n+k+1)

(β−k+1)(2n+α+β+3)(n+α+β+2)

)
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Pentadiagonal Jacobi matrix

Particular case α = β = 0, k = 1/2:

P =




5

9

2

9

2

9
2

9

7

18

4

45

3

10
5

36

1

18

107

225

3

50

27

50
1

6

4

75

23

50

6

175

2

7
14

75

2

75

597

1225

4

147

40

147
1

5

6

245

47

98

8

441

5

18
81

392

3

196

1955

3969

5

324

175

648
. . .

. . .
. . .

. . .
. . .




Manuel Domínguez de la Iglesia Methods of OMP satisfying differential equations



Scalar versus matrix
Applications

Open problems

Quasi-birth-and-death processes
Quantum mechanics
Time-and-band limiting

Invariant measure

Invariant measure

The row vector

π = (π0;π1; · · · )

π
n =

(
1(

‖Qn‖2

W

)
1,1

,
1(

‖Qn‖2

W

)
2,2

, · · · ,
1(

‖Qn‖2

W

)
N,N

)
, n > 0

is an invariant measure of P

Particular case N = 2, α = β = 0, k = 1/2:

π
n =

(
2(n + 1)3

(2n + 3)(2n + 1)
,
(n + 1)(n + 2)

2n + 3

)
, n > 0

π =

(
2

3
,
2

3
;
16

15
,
6

5
;
54

35
,
12

7
;
128

63
,
20

9
;
250

99
,
30

11
;
432

143
,
42

13
;
686

195
,
56

15
; · · ·

)
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Quantum mechanics

Dirac’s equation (central Coulomb potential)

T ′(t) =

(
A +

B

t

)
T (t)

where

A =

(
0 1 + ω

1 − ω 0

)
, B =

(
−a b

−b a

)

Rose (1961)

Choosing ω = ±
√

a2 − b2/a (lowest possible energy level) the solution of

the Dirac’s equation gives rise to a matrix weight whose OMP are

eigenfunctions of certain second order differential equation
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Theorem (Durán-Grünbaum, 2006)

Consider the following instance of the Dirac’s equation

T ′(t) =

(
Ã +

B̃

t

)
T (t)

Ã =

√
1 − 1/(4a)2

(
−1 1

0 1

)
, B̃ =

(
−1/2 a − 1/2

0 1/2

)

Then W (t) = tα+1e−tT (t)e−D
Ã
tHe

−D∗

Ã
t
T ∗(t), where

H = eD
ÃT−1(1)(T−1)∗(1)e

D∗

Ã allows for the following second order

differential operator

D = ∂2tI + ∂1(−tI + 2E + (α + 1)I ) + ∂0(−E + E0)

E =

(
0 1/2

0 1

)
, E0 =

1 + α

5

(
−1 1/2

−2 1

)
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Time-and-band limiting

Given a full matrix M (integral operator) the computation of all its

eigenvectors can be explicitly given if one finds a tridiagonal matrix S

(differential operator) with simple spectrum such that

MS = SM

Classical scalar orthogonal polynomials: Grünbaum (1983)

Matrix case: Durán-Grünbaum (2005)

Example of QBD for N = 2, α = β = 0, k = 1/2

W (t) =

(
1

2
t + 1

2
2t − 1

2t − 1 9

2
t2 − 11

2
t + 2

)
, t ∈ [0, 1]

Grünbaum (2003)
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Considering the same family (Qn)n as before we have that

‖Qn‖2

W =

(
(2n+1)(2n+3)

2(n+1)3 0

0 2n+3

(n+1)(n+2)

)

and we can produce a family of normalized OMP Pn = ‖Qn‖−1

W Qn

Reproducing kernel

(M)i ,j =

∫Ω

0

Pi (t)W (t)P∗
j (t)dt, i , j = 0, 1, . . . ,T

“Band limiting”: Restriction to the interval (0,Ω)

“Time limiting”: Restriction to the range 0, 1, . . . ,T

⇒ There exists a block tridiagonal matrix S (pentadiagonal) such that

M commutes with S

Scalar case: the vector space of all possible S ’s is 2-dimensional

Matrix case: the vector space of all possible S ’s is 3-dimensional

Manuel Domínguez de la Iglesia Methods of OMP satisfying differential equations



Scalar versus matrix
Applications

Open problems

Quasi-birth-and-death processes
Quantum mechanics
Time-and-band limiting

Considering the same family (Qn)n as before we have that

‖Qn‖2

W =

(
(2n+1)(2n+3)

2(n+1)3 0

0 2n+3

(n+1)(n+2)

)

and we can produce a family of normalized OMP Pn = ‖Qn‖−1

W Qn

Reproducing kernel

(M)i ,j =

∫Ω

0

Pi (t)W (t)P∗
j (t)dt, i , j = 0, 1, . . . ,T

“Band limiting”: Restriction to the interval (0,Ω)

“Time limiting”: Restriction to the range 0, 1, . . . ,T

⇒ There exists a block tridiagonal matrix S (pentadiagonal) such that

M commutes with S

Scalar case: the vector space of all possible S ’s is 2-dimensional

Matrix case: the vector space of all possible S ’s is 3-dimensional

Manuel Domínguez de la Iglesia Methods of OMP satisfying differential equations



Scalar versus matrix
Applications

Open problems

Quasi-birth-and-death processes
Quantum mechanics
Time-and-band limiting

Considering the same family (Qn)n as before we have that

‖Qn‖2

W =

(
(2n+1)(2n+3)

2(n+1)3 0

0 2n+3

(n+1)(n+2)

)

and we can produce a family of normalized OMP Pn = ‖Qn‖−1

W Qn

Reproducing kernel

(M)i ,j =

∫Ω

0

Pi (t)W (t)P∗
j (t)dt, i , j = 0, 1, . . . ,T

“Band limiting”: Restriction to the interval (0,Ω)

“Time limiting”: Restriction to the range 0, 1, . . . ,T

⇒ There exists a block tridiagonal matrix S (pentadiagonal) such that

M commutes with S

Scalar case: the vector space of all possible S ’s is 2-dimensional

Matrix case: the vector space of all possible S ’s is 3-dimensional

Manuel Domínguez de la Iglesia Methods of OMP satisfying differential equations



Scalar versus matrix
Applications

Open problems

Quasi-birth-and-death processes
Quantum mechanics
Time-and-band limiting

Considering the same family (Qn)n as before we have that

‖Qn‖2

W =

(
(2n+1)(2n+3)

2(n+1)3 0

0 2n+3

(n+1)(n+2)

)

and we can produce a family of normalized OMP Pn = ‖Qn‖−1

W Qn

Reproducing kernel

(M)i ,j =

∫Ω

0

Pi (t)W (t)P∗
j (t)dt, i , j = 0, 1, . . . ,T

“Band limiting”: Restriction to the interval (0,Ω)

“Time limiting”: Restriction to the range 0, 1, . . . ,T

⇒ There exists a block tridiagonal matrix S (pentadiagonal) such that

M commutes with S

Scalar case: the vector space of all possible S ’s is 2-dimensional

Matrix case: the vector space of all possible S ’s is 3-dimensional

Manuel Domínguez de la Iglesia Methods of OMP satisfying differential equations



Scalar versus matrix
Applications

Open problems

Outline

1 Scalar versus matrix orthogonality
Scalar case
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New phenomena
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Quantum mechanics
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Open problems

Classify all families of OMP satisfying any order differential operators.

Proof of the algebras of differential operators associated with any size

weight matrix.

Electrostatic equilibrium of the zeros of these new families of OMP.

Riemann-Hilbert problem for MOP: Given a weight matrix W and a
positive integer n, find a 2N × 2N matrix valued function

1 Y : C \ R → C2N×2N is analytic.
2 Y has boundary values for t ∈ R, denoted by Y±(t), and

Y+(t) = Y−(t)

(
I W (t)

0 I

)
, t ∈ R

3 As z → ∞,

Y (z) =

(
I + O

(
1

z

))(
znI 0

0 z
−n

I

)
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The unique solution of the Riemann-Hilbert problem is given by

Y (z) =




Pn(z)
1

2πi

∫

R

Pn(s)W (s)

s − z
ds

−2πiγ∗
n−1

γn−1Pn−1(z) −γ∗
n−1

γn−1

∫

R

Pn(s)W (s)

s − z
ds




Pn(z) monic MOP,γn is the leading coefficient of an orthonormal family.

Asymptotics of these new families of OMP: Try to find the matrix version of

the Heine’s formula

Pn(x) =
1

n!Dn

∫

· · ·
∫ n∏

j=1

(x − xj )
∏

i<j

(xj − xi )
2
dω(x1) · · · dω(xn)

where

Dn =

∣∣∣∣∣∣∣∣∣

µ0 µ1 · · · µn−1

µ1 µ2 · · · µn

...
...

. . .
...

µn−1 µn · · · µ2n−2

∣∣∣∣∣∣∣∣∣

using quasi-determinants.
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